skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Xuelin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, the Na–K liquid alloy with a charge selective interfacial layer is developed to achieve an impressively long cycling life with small overpotential on a sodium super‐ionic conductor solid‐state electrolyte (NASICON SSE). With this unique multi‐cation system as the platform, we further propose a unique model that contains a chemical decomposition domain and a kinetic decomposition domain for the interfacial stability model. Based on this model, two charge selection mechanisms are proposed with dynamic chemical kinetic equilibrium and electrochemical kinetics as the manners of control, respectively, and both are validated by the electrochemical measurements with microscopic and spectroscopic characterizations. This study provides an effective design for high‐energy‐density solid‐state battery with alkali Na–K anode, but also presents a novel approach to understand the interfacial chemical processes that could inspire and guide future designs. 
    more » « less